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Gleason’s Theorem in W*J-Algebras in Spaces with
Indefinite Metric
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We characterize measures on hyperbolic logics associated to von Neumann
algebras acting in a space with an indefinite metric. An analog to the Gleason
theorem is proved.

1. INTRODUCTION

The problem of describing measures on logics is well known (see ref.

2 or ref. 3 Chapter XII) . A celebrated theorem of Gleason(6) serves as a basis

for the quantum measure theory. The theorem asserts that every probability

measure m on the orthogonal projections P on a Hilbert space * with dim
* $ 3 is of the form m ( p) 5 tr(Tp), where T $ 0 is a uniquely determined

trace-class operator. The problem of describing all probability measures on

projections arose in noncommutative probability theory. For von Neumann

algebras of type II, an analog to the Gleason theorem was proved in ref. 9.

Three years later this result was reproduced by Yeadon(16) with a similar

proof. The case of type III was examined in ref. 3 and ref. 10 independently.

An analog to the Gleason theorem for charges ( 5 real measures) was obtained

in 11. There has been significant progress for the logic L of all (skew)

projections in a von Neumann algebra. In refs. 15 and 12 we proved that for

signed measure ( 5 charge) n on the Logic L of all (not necessarily orthogonal)

projections in a semifinite von Neumann algebra containing no central sum-

mand of type I2, the following generalization to the Gleason formula holds:

n ( p) 5 Rtr(Tp), " p P L, where T is a trace-class operator.
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Theorem. Let P be the logic of all J-self-adjoint projections in a W*J-

algebra ! acting in a space with an indefinite metric containing no central

summand of type In,m (n, m # 2). Then for every indefinite measure n : P ®
R there is a J-self-adjoint trace-class operator T such that:

(i) If ! is a W*P-algebra, then

n ( p) 5 tr(Tp) 1 n 0( p), " p P P

for some semiconstant n 0

(ii) If ! is a W*K-algebra, then

n ( p) 5 tr(Tp), " p P P (1)

In the present paper, we characterize measures on hyperbolic logics

associated to algebras of operators acting in a space with an indefinite metric.

Note that the problem of the construction of a quantum field theory leads to

indefinite metric spaces.(3) As is well known, for the logic P (as well as for
the logics L), no general approach to describing measures has been found

that is suitable for all continuous algebras. Two different methods have been

suggested for algebras of types II and III. For the logics P, we suggest a

common approach.

We present the necessary definitions and notation. Let H be a Hilbert
space with an inner product (., .). Let J be a linear or conjugate linear

invertible bounded operator on H. Put [x, y] 5 (Jx, y), " x, y P H. Let ! be

an algebra of bounded operators in H with the unit I closed in the weak

operator topology and closed with respect to the J-conjugation, i.e., if a P
!, then a0 P !, where a0 is a bounded operator such that [ax, y] 5 [x, a0y],

" x, y P H. Such an algebra is called a J-algebra. Denote by P [ 5 P(!)]
the set of all J-self-adjoint projections in !, i.e., P 5 { p P !: p2 5 p,

[px, z] 5 [x, pz], " x, z P H }. With respect to the ordering p # q Û pq 5
qp 5 p, to the orthocomplementation p ® p ’ [ I 2 p, and to the orthogonal

relation p ’ q Û pq 5 qp 5 0, the set P is a quantum logic.

In general, P is not a lattice or a s -logic.

There have been many studies of J-self-adjoint operators if J is a self-
adjoint (in the Hilbert space H ) operator, J Þ 6 I, J2 5 I. Below, we will

consider this case. There exist orthogonal projections Q+ and Q 2 such that

Q+ 1 Q 2 5 I, J 5 Q+ 2 Q 2 . Put H + 5 Q+H and H 2 5 Q 2 H. According

to the terminology of ref. 1 [. . .] is an indefinite metric in H, J is a canonical

symmetry, H 5 H + [ 1 ] H 2 is a canonical decomposition, and H is a Krein

space ( sometimes H is called a J-space).
Let p P B(H ). It is easy to see that [px, y] 5 [x, py], " x, y P H Û

p 5 Jp*J ( 5 p0).

Let S be the unit sphere in the Hilbert space H. The set G [ {r P H:

[r, r]2 5 1} is an indefinite analog of the unit sphere. It is easy to see that
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every one-dimensional projection p P P can be represented in the form pf 5
[ f, f ][, f ] f, f P G . Suppose that H 5 R3 and ! 5 B(H ). Then G is the union

of two hyperboloids, {(x, y, z): x2 1 y2 2 z2 5 1} and {(xÇ , y, z): z2 2 x2 2
y2 5 1}. Therefore, in this case the logic P could be called hyperbolic.

Let !1 be the set of all J-algebras in H. A J-algebra ! is said to be a

von Neumann J-algebra if ! is, in addition, a von Neumann algebra. Denote

by !2 the set of all von Neumann J-algebras. A von Neumann J-algebra !
is called a W*J-algebra if J P ! and the cenral covers of Q+ and Q 2 equal

I. Let !3 be the set of all W*J-algebras in H. Obviously !3 , !2 , !1.
We say that a W*J-algebra ! has the type I (II, III) if the W*-algebra ! has

the type I (II. III). We say that a W*J-algebra ! is a W*P-algebra if at least

one of the projections Q+ and Q 2 is finite (with respect to !). A W*J-algebra

! is said to be a W*K-algebra if the W*-algebras Q+!Q+ and Q 2 !Q 2

contain no nonzero finite direct summand. For every W*J-algebra ! there

exist three central projections E+, E 2 , and E such that E+ 1 E 2 1 E 5 I,
Q+E+ is a finite projection with respect to the W*-algebra !E+, Q 2 E 2 is

finite with respect to !E 2 , and !E is a W*K-algebra. Note that every W*P-

algebra inherits properties of B(H ) in a Pontryagin space and every W*K-

algebra inherits properties of B(H ) in a Krein space with min{dim H +, dim

H 2 } 5 ` . We say that a W*J-algebra ! is of type In,m if Q+!Q+ and Q 2 !Q 2

(in Q+ H and in Q 2 H ) is of type n and m, respectively.

Elementary properties. Let @ be a von Neumann algebra acting in a

Hilbert space *. Let + and @p be the set of all projections and the set of

all orthogonal projections in @. There exist P which are isomorphic to L
or @p.(14)

A specific character of J-spaces becomes fully transparent when consid-

ering the logic P for a W*J-algebra !. We shall consider this case. Denote

by P the set of all orthogonal projections in !. Now, let P+ (P 2 ) be the set

of all projections p P P for which pH is positive, i.e., " x P pH, x Þ 0,

[x, x] . 0 (negative, i.e., " x P pH, x Þ 0, [x, x] , 0). Note that p P P+

( p P P 2 ) Û p* P P+ ( p* P P 2 ) Û Jp $ 0 (Jp # 0). Every e P P is
representable (not uniquely) as e 5 e+ 1 e 2 , where e+ P P+, e 2 P P 2 .

A sum e 5 ( ei for ei P P, ei ’ ej (i Þ j ) is said to be a decomposition
of e (the sum shuld be understood in the strong sense). A mapping m : P ®
R is called a measure if m (e) 5 ( m (ei) for every decomposition e 5 ( ei.

Here, the convergence of an uncountable family of summands means

that there exists only a countable set of nonzero terms in the family and the
usual series with these summands converges absolutely.

A measure is said to be indefinite if m /P+ $ 0 and m /P 2 # 0; linear if

(1) holds; and a semiconstant ( 5 semitrace) if m ( p) 5 c t (Ep+), " p P P, or

m ( p) 5 c t (Ep 2 ), " p P P. where t is a faithful normal semifinite trace on
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! and E is an operator affiliated to the center of !. We call a measure m
Hermitian if m ( p) 5 m ( p*), " p P P, and skew-Hermitian if m ( p) 5 2 m ( p*),

" p P P. Every measure m can be represented as the sum of the Hermitian
component m h ( p) [ 1/2[ m ( p) 1 m ( p*)] and the skew-Hermitian one m s( p) [
1/2[ m ( p) 2 m ( p*)]. Clearly, if m is an indefinite measure, then its Hermitian

component m h is an indefinite measure also.

Remark 1. An indefinite measure is an analog for a probability measure

on the logic P. In ref. 13 we proved that for any indefinite measure m in a
Krein space H, dim H $ 3 and for the W*J-algebra B(H ) the main theorem

is true.

We need the following concept of a variation of a measure m ; | m |( p) [
sup{ ( ) m ( pi) ) } taken over all possible decompositions p 5 ( pi. Also, put

M m
a [ sup{ ) m ( p) ) : p P P+, |p| # 2 a 2 1, a . 1} (1)

2. THE STRUCTURE OF THE PROJECTIONS IN P

For any operator x P ! denote by Fx the orthogonal projection onto

xH. Let e, f P P . We write e , f if there exists a partial isometry v P !
with the initial projection e and the final projection Fv 5 f. We write e d f
if Fv # f. Without loss of generality it can be assumed that Q+ d Q 2 (ref. 5,

Theorem 1, p. 218). Denote by V the set of all partial isometries v P ! with

the initial projection not exceeding Q+ and with the final projection Fv # Q 2 .

Proposition 2. For every p P P+ we have

p 5 x 1 v(x2 2 x)1/2 2 (x2 2 x)1/2v* 2 v(x 2 Fx)v* (2)

where x [ Q+pQ+ ( $ Fx) and v is a partial isometry in the polar decomposition

Q 2 pQ+ 5 v ) Q 2 pQ+ ) . Conversely, let x P ! be an arbitrary operator such
that x $ Fx and Fx # Q+, and let v P V be an arbitrary partial isometry with

the initial projection Fx. Then (2) defines a projection in P+.

Proof. See ref. 14.

By the symmetry, every q P P 2 has the following representation:

q 5 z 1 w(z2 2 z)1/2 2 (z2 2 z)1/2w 2 w(z 2 Fz)w* (3)

where z [ Q 2 qQ 2 ( $ Fz) and w is the partial isometry in the polar decomposi-

tion Q+qQ 2 5 w ) Q+qQ 2 ) for Q+qQ 2 .

For any projection p P P we denote by ep the orthogonal projection

onto Q+pH. We say that a projection p P P is simple if epFpep 5 a ep and

FpepFp 5 a Fp , a P (0.1). Note that every simple projection is either positive
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or negative. The following corollary is a straightforward consequence from

Proposition 2.

Corollary 3. Suppose that p P P+ is represented by (2). Then we obtain:

(i) | p| 5 |2x 2 I| 5 2|x| 2 1
(ii) Fp 5 x (2x 2 I ) 2 1 1 v(x2 2 x)1/2(2x 2 I ) 2 1 1 (2x 2 I ) 2 1(x2 2

x)1/2v* 1 v(x 2 Fx)(2x 2 I ) 2 1v*

(iii) The projection p is simple if and only if x 5 a Fx , a . 1.

We mention one more property:

(iv) If an orthogonal projection e P P is such that eQ+e 5 b e, b P
(1/2, 1), then there is a simple projection p P P+ such that e 5 Fp and | p| 5
(2 b 2 1) 2 1.

Remark 4. Every p P P+ ø P 2 can be approximated in the norm with

a sum of mutually orthogonal simple projections.

In the sequel, the projection p of the form (2) will be denoted by p(x, v)
and the projection q of the form (3) by q(w(z 2 Fz)w*, w*).

Lemma 5. Let p P P+ and ep d Q 2 Ù (Fp Ú ep)
’ . Then there exists a

simple projection g P P+ such that:
1. ep 5 eg , |eg 2 g| # |ep 2 p|.
2. In the Hilbert space H with the norm | ? |1 generated by a new canonical

symmetry J1 5 Q 1
1 2 Q 2

1 P ! such that p # Q 1
1 , the projection g is simple

and Q 1
1 gH 5 pH, |g 2 p|1 # |ep 2 p|.

Proof. One can suppose that Q+H ù pH 5 0. Let p 5 p(x, v) and a [
1/2(| p| 1 1) ( 5 |x|). By Corollary 3 and Proposition 2, ep , x # a ep. Put

y0 [ ( a 2 1) 2 1(x 2 ep) { a 1/2I 1 [ a ep 2 (x 2 ep)]1/2} 2 2

Thus 0 , y0 # ep. By the assumption, there exists a partial isometry w P
! with the initial projection vv* and the final one Fw # Q 2 Ù (Fp Ú ep)

’ . Let

z [ vy1/2
0 v* 1 w(Fv 2 vy1/2

0 v*)1/2 [ 5 vy1/2
0 v* 1 wv(ep 2 y0)

1/2v*]

It can be easily shown that z is a partial isometry with the initial projection

vv* 5 Fv. By the construction, g [ p( a ep , zv) is a simple projection, eg 5
ep , and |eg 2 g| 5 |ep 2 p|. The operator y1/2

0 is a solution of the equation

a (x 2 ep)
1/2 5 2[ a ( a 2 1)]1/2 y1/2 2 ( a 2 1)(x 2 ep)

1/2y

Making use of this, we can verify that

pgp 5 p(x, v)p( a ep , zv)p(x, v) 5 a p(x, v)

Let J1 5 Q 1
1 2 Q 2

1 P ! be a new canonical symmetry, where p # Q 1
1 , with

respect to a new canonical decomposition H 5 H 1
1 [ 1 ] H 2

1 (see Definitions,
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§3, Chapter I, ref. 1). The new Hilbert product (x, y)1 [ [J1 x, y] is equivalent

to the product (., .) in H (see Theorem 7.19, §7, Chapter I, ref. 1). Hence

the projection p( a ep , zv) is simple in the Hilbert space H with (., .)1. By the
construction, | p 2 g|1 5 |ep 2 p|.

Let e P P be a projection such that 1/2 is a regular point for eQ+e. (In

this case, eH is a Krein space(1) with respect to the metric [., .], and there

exists a projection p P P such that e 5 Fp.) Let eQ+e 5 * l de l be the

spectral decomposition of eQ+e. Put pt 5 ( * t
2 0 (2 l 2 1) 2 1 d (ee l ))J, " t . 0

[here (1/0) ? 0 [ 0]. By the definition, Jp*t J 5 pt , " t. We have

(es 2 et)J(e l 2 e b ) 5 (es 2 et)(2Q+ 2 I )(e l 2 e b )

5 e(2Q+ 2 I )(es 2 et)(e l 2 e b ) 5 eJ(es 2 et)(e l 2 e b )

" s, t, l , b P (0, 1 ` ). This means that p2
t 5 pt , " t. In addition, pt2 2

pt1 P P+, " t1, t2 P (1/2, 1], t1 , t2, and pt2 2 pt1 P P 2 , t1, t2 P [0, 1/2],

t1 , t2. Thus

pt P P, " t, and e 5 1 #
1 1

0 2

(2t 2 1) dpt 2 J
3. SOME PROPERTIES OF A LINEAR SKEW-HERMITIAN

MEASURE

Let !
*

be the set of all norm-continuous linear functionals on !. Let

f P !
*

be such that f (.): P ® R is an indefinite measure and ( f .J )(b) [
f (bJ ), " b P !. By (4), ( f .J )(e) 5 f (( * 1 1

0 2 (2t 2 1)dpt)JJ ) $ 0, for every

orthogonal projection e P P for which 1/2 is a regular point of eP+e. Hence

( f .J ) ( ? ) is a nonnegative linear functional. Let c P !
*
. Then the functionals

c 0(x) [ c (x0) and c *(x) [ c (x*), " x P !, belong to !
*
. A functional c

is said to be J-self-adjoint (J-skew-adjoint) if c 5 c 0 ( c 5 2 c 0).

Let m : P ® R be a linear measure and let f P !
*

be such that m ( p)
5 f( p), " p P P. Then the functional c [ 1/2( f 1 f 0) is J-self-adjoint and

m ( p) 5 c ( p), " p P P. It is clear that x*0 5 x0*, " x P !. Hence (1) f *0 5
f 0*, " f P !

*
, (2) if f 5 f 0, then f * 5 f *0, and (3) if f 5 f *, then f 0 5 f 0*.

Thus (i) if m is a Hermitian measure, then there is a self-adjoint and J-self-

adjoint functional fh [ 5 1/4( f 1 f * 1 f 0 1 f 0*)] such that m ( p) 5 fh( p),

" p P P, (ii) if m is a skew-Hermitian measure, then there is a skew-adjoint
and J-adjoint functional fs [ 5 1/4( f 2 f * 1 f 0 2 f 0*)] such that m ( p) 5
fs( p), " p P P. For every self-adjoint functional f P !

*
there exist two

positive normal functionals f+, f 2 P ! with mutually orthogonal covers e+

and e 2 such that f 5 f+ 2 f 2 (ref. 5, Theorem 6, p. 64).
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Proposition 6. Let f P !
*

and f 5 f* 5 f 0. Then e+ J 5 Je+, e 2 J 5
Je 2 , and, furthermore, f 5 f(Q+.Q+) 1 f(Q 2 .Q 2 ).

Proof. It is clear that

0 # f+(e+) 5 f(e+) 5 f 0(e+) 5 f(Je+J )

5 f+(e+(Je+J )e+) 2 f 2 (e 2 (Je+J )e 2 ) # f+(e+)

Thus f+(e+(Je+J )e+) 5 f+(e+). Hence e+(I 2 Je+J )e+ 5 0, i.e., e+ # Je+J. Then

Je+J # J(Je+J )J 5 e+. Finally, e+ 5 Je+J. Similarly, e 2 5 Je 2 J. In addition.

f(Q 2 a*Q+) 5 f*(Q+aQ 2 ) 5 f(Q+ aQ 2 ) 5 f 0(Q+ aQ 2 )

5 f(JQ 2 a*Q+J ) 5 2 f(Q 2 a*Q+)

" a P !. Hence f(Q+ aQ 2 ) 5 0 and, similarly f(Q 2 aQ+) 5 0, " a P !.

This means f 5 f(Q+. Q+) 1 f(Q 2 . Q 2 ).

For any f P !
*

and u P ! denote by (u. f ) [( f. u)] the functional f(u.)
[ f(.u), respectively].

Proposition 7. Let f P !
*

and f 5 f 0 5 2 f*. Let (Q 2 .f.Q+) 5 ( ) Q 2 .

f.Q+ ) .u) be the polar decomposition of the functional (Q 2 .f.Q+.) (Theorem 4,

p. 61 ref. 5). Then the following formula is true:

f 5 f(Q 2 .Q+) 1 f(Q+.Q 2 ) 5 ( ) Q 2 .f.Q+ ) .u) 2 (u*. ) Q 2 .fQ+ ) )
Proof. For every orthogonal projection e P ! with e # Q+ or e # Q 2

the following is true:

f (e) 5 f (JeJ ) 5 f (e0) 5 f 0(e) 5 2 f *(e) 5 2 f (e)

Hence

f (.) 5 f (Q 2 .Q+) 1 f (Q+.Q 2 ) [ (Q 2 .f.Q+)(.) 1 (Q+.f.Q 2 )(.)

Thus

f (a) 5 f 0(a) 5 f (Ja*J )

5 f (Q 2 (Ja*J )Q+) 1 f (Q+(Ja*J )Q 2 ) 5 2 f (Q 2 a*Q+) 2 f (Q+a*Q 2 )

" a P !. But

(Q+.f.Q 2 )(a) 5 f (Q+aQ 2 ) 5 2 f *(Q+aQ 2 )

5 2 f (Q 2 a*Q+) 5 2 (Q 2 .f.Q+)*(a)

i.e., 2 (Q 2 .f.Q+)* 5 (Q+.f.Q 2 ). Let (Q 2 .f.Q+) 5 ( ) Q 2 .f.Q+ ) .u) be the polar

decomposition of the functional (Q 2 .f.Q+). Then
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f 5 (Q 2 .f.Q+) 1 (Q+.f.Q 2 ) 5 (Q 2 .f.Q+) 2 (Q 2 .f.Q+)*

5 ( ) Q 2 .f.Q+ ) .u) 2 (u* . ) Q 2 .f.Q+ ) )

Let f P !
*

be a nonnegative normal linear functional with the support

e # Q+. Let u P V be a partial isometry with the initial projection e and,

the final one Fv # Q 2 . We define a linear functional by the formula

m (a [ ((u*. f ) 2 ( f .u))(a) 5 f (u*a 2 au), " a P ! (5)

It is clear that m ( p) P R, " p P P. Hence m is a linear measure. Also, m 5
m 0 5 2 m *. Hence by Proposition 7, (5) gives the general form of a linear

skew-Hermitian measure. It is clear that

m ( p) 5 f ((x2 2 x)1/2v*u 1 u*v(x2 2 x)1/2), " p 5 p(x, v)

We define the functional f v( ? ) [ 1/2 f (u*v. 1 .v*u), where v P V, and the

skew-Hermitian measure m v( p [ f v(v*p 2 pv), " p P P. It is easy to see that

m v( p) 5 1/2 f (u*p 2 u*vpv 1 v*pv*u 2 pu)

5 1/2 m ( p) 1 1/2 f (v*pv*u 2 u*vpv)

" p P P. Obviously, m ( p) 5 m v( p), " p 5 p(x, v).

Now, we adduce some properties of a linear skew-Hermitian measure

that are crucial in the proof of the theorem.

Proposition 8. Let a skew-Hermitian measure m be defined by (5). Then

the following properties hold:

(i) M m
a 5 sup{| m |( p): | p| # 2 a 2 1} 5 2( a 2 2 a )1/2 f (Q+) 5

m ( p( a Q+, u)).

(ii) m ( p(x, iu)) 5 0, " x; if Fu ’ Fv , then m ( p(x, v)) 5 0.

(iii) If, for a given e . 0, v P V is chosen so that M m
a 2 m ( p( a Q+, v))

, e , then

) m ( p) 2 m v( p) ) # 2| p|(| f | e )1/2( a 2 2 a ) 2 1/4, p P P

Proof. Properties (i) and (ii) follow directly from the definitions of m
and p(x, v). Let v P V be an partial isometry satisfying (iii). Then

e . M m
a 2 m v ( p( a Q+, v)) 5 ( a 2 2 a )1/2 f (2Q+ 2 v*u 2 u*v) $ 0

Also, Q 2 p*Q+ 5 Q 2 JpJQ+ 5 2 Q 2 pQ+, " p P P. Hence
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f (u*p 2 v*pv*u) 5 f (u*Q 2 pQ+ 2 v*Q 2 pQ+v*u)

5 f (v*Q 2 p*Q+v*u 2 u*Q 2 p*Q+)

5 f (u*vQ+pQ 2 v 2 Q+pQ 2 u)

5 f (u*vpv 2 pu)

Finally,

) m ( p) 2 m v( p) )
5 1/2 ) m ( p) 2 f (v*pv*u 2 u*vpv) )
5 1/2 ) f (u*p 2 pu) 2 f (v*pv*u 2 u*vpv) )
5 1/2 ) f (u*p 2 v*pv*u) 1 f (u*vpv 2 pu) )
# ) f (u*p 2 v*pv*u) )
5 ) f (u*p 2 u*pv*u 1 u*pv*u 2 v*pv*u) )
# ) f (u*p(Q+ 2 v*u)) ) 1 ) f ((u* 2 v*)pv*u) )

(by the Schwarz inequality)

# f (u*pp*u)1/2 f ((Q+ 2 u*v)(Q+ 2 v*u))1/2

1 f (u*vp*pv*u)1/2 f ((u* 2 v*)(u 2 v))1/2

# f (Q+)1/2| p|( f (Q+ 2 u*v 2 v*u 1 Q+)1/2

1 f (Q+ 2 v*u 2 u*v 1 Q+)1/2)

5 2| p| f (Q+)1/2( f (2Q+ 2 u*v 2 v*u))1/2 [by (i)]

5 2| p| f (Q+)1/2((M m
a 2 m v( p( a Q+, v)))( a 2 2 a ) 2 1/2)1/2

# 2| p|(| f |) e )1/2( a 2 2 a ) 2 1/4

The proof is complete.

4. REDUCING THE DESCRIPTION PROBLEM TO A SKEW-
HERMITIAN MEASURE

Proposition 9. Let n ( p) 5 t (Ep+), p P P, be a semiconstant measure.

Then n (ep) 5 t (EFp) 5 n ( p), " p P P+.

Proof. Let p P P+. By the definition of a semiconstant measure, the

operator E is affiliated to the center of !. By the definition of ep , there exists

a partial isometry v P ! with the initial projection Fp and the final one

ep. Hence
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n (ep) 5 t (Eep) 5 t (Evv*) 5 t (Ev*v)

5 t (EFp) 5 t (E(Fp 1 FppF ’
p ) 5 t (Ep) 5 n ( p)

Recall that without loss of generality we may suppose Q+ d Q 2 .

Lemma 10. Let an indefinite measure n : P ® R be representable as a

sum of two measure: n 5 n 1 1 n 0, where n 0 is a semiconstant measure and

the restriction of n 1 to every W*J-factor @ , ! of type I2 is linear. Then

) n (ep) 2 n ( p) ) # 6 |ep 2 p|(1 2 2)|ep 2 p|) 2 1( n (Q+) 2 n (Q 2 ) 1 5| n 0|(I ))

" p P P+, |ep 2 p| , 1/2.

Proof. (i) Let m (.) [ tr(B.), where BJ $ 0 be an indefinite measure. Then

) m (e) 2 m ( p) ) 5 ) tr(BJJ(e 2 p)) ) # |e 2 p|tr(BJ )

5 |e 2 p|(tr(BQ+) 2 tr(BQ 2 )) 5 |e 2 p|( m (Q+) 2 m (Q 2 )), " e, p P P

Let p P P+ and |ep 2 p| , 1/2.

1. We first assume that ep d Q 2 Ù (Fp Ú ep). Let g P P+ be as in Lemma

5. Denote by re the orthogonal projection onto Q 2 eH, " e P P, and by !(ep ,

g) and !( p, g) the smallest J-self-adjoint algebras generated by ep , g and p,
g, respectively. By the construction, !(ep , g) and !( p, g) are W*J-factors

of type I2.

(a) Let n 0 [ 0. By the linearity of n on !(ep , g) and (i), we have

) n (rp Ú rg) 2 n (ep 1 rp Ú rg 2 g) )
5 ) n (rp Ú rg 2 rg) 1 n (rg) 2 n (rp Ú rg 2 rg) 2 n (ep 1 rg 2 g) )
# |rg 2 (ep 1 rg 2 g)|( n (ep) 2 n (rg))

# |ep 2 p|( n (ep) 2 n (rg)) # |ep 2 p|( n (ep) 2 n (rg ~ rp))

By (i).

) n (ep) 2 n (g) ) # |ep 2 p|( n (ep) 2 n (rg)) # |ep 2 p|( n (ep) 2 n (rg Ú rp))

It is clear that ep 1 rg Ú rp 2 g P P 2 . Thus

0 # n (g) 2 n (ep 1 rp Ú rg 2 g)

# n (g) 2 n (ep) 1 n (ep) 2 n (rp Ú rg)

1 n (rp Ú rg) 2 n (ep 1 rp Ú rg 2 g)

# (1 1 2|ep 2 p|)( n (ep) 2 n (rp Ú rg)) (6)

Analogously, from the linearity of n on !( p, g) we obtain
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max{ ) n ( p) 2 n (g) ) , ) n (ep 1 rp Ú rg 2 g) 2 n (ep 1 rp Ú rg 2 p) ) }
# |ep 2 p|)( n ( p) 2 n (ep 1 rp Ú rg 2 p))

Thus

(1 2 2|ep 2 p|)[ n ( p) 2 n (ep 1 rp Ú rg 2 p)]

# [ n ( p) 2 n (ep 1 rp Ú rg 2 p)] 2 [ n ( p) 2 n ( p)]

2 [ n (ep 1 rp Ú rg 2 g) 2 n (ep 1 rp Ú rg 2 p)] (7)

5 n (g) 2 n (ep 1 rp Ú rg 2 g)

Hence by (6) and (7), we have

n ( p) 2 n (ep 1 rp Ú rg 2 p)

# (1 1 2|ep 2 p|)(1 2 2|ep 2 p|) 2 1( n (ep) 2 n (rp Ú rg))

Thus

) n (ep) 2 n ( p) ) # ) n (ep) 2 n (g) ) 1 ) n (g) 2 n ( p) )
# |ep 2 p|( n (ep) 2 n (rp Ú rg)) 1 |ep 2 p|( n ( p) 2 n (ep 1 rp Ú rg 2 p))

# 2|ep 2 p|(1 2 2|ep 2 p|) 2 1( n (ep) 2 n (rp Ú rg))

(b) Now, let n 0 Þ 0. Without loss of generality we may suppose that

n 0(e) 5 t (Ee+), " e P P. Here, E is an operator affiliated to the center of !.

Denote ) E ) 5 (E 2)1/2. The restriction of n 0(.) [ t ( ) E ) J.) to the projections of
any W*J-factor is a linear indefinite measure. Clearly

0 # n 0(ep) 5 2 n 0(rg) 5 2 n 0(rp) # n 0(Q
+) 5 | n 0|(I )

By Corollary 3(ii), eJ $ Fe , " e P P+. So, n 0(e) 5 t (EFe) # t ( ) E ) eJ ) 5
n 0(e). Hence 0 # n (e) # n 1(e) 1 n 0(e), " e P P+, and 0 $ n (e) 5 n 1(e) $
n 1(e) 1 n 0(e), " e P P 2 . Thus n 1 1 n 0 is a linear indefinite measure on any
W*J-factor of type I2. By (a).

) n (ep) 2 n ( p) ) 5 ) n 1(ep) 2 n 1( p) )
# ) n 1(ep) 1 n 0(ep) 2 n 1( p) 2 n 0( p) ) 1 ) n 0(ep) 2 n 0( p) )
# 2|ep 2 p|(1 2 2|ep 2 p|) 2 1[ n 1(ep) 1 n 0(ep)

2 n 1(rp Ú rg) 2 n 0(rp Ú rg)] 1 |ep 2 p|[ n 0(ep) 2 n 0(rp)]

# 2|ep 2 p|(1 2 2|ep 2 p|) 2 1[ n (Q+) 2 n (Q 2 ) 1 5| n |(I )]

2. Now, consider the general case of p P P+. There exists a decomposition

p 5 p1 1 p2 1 p3 with pi P P+ such that epi d Q 2 Ù (Fpi Ú epi), " i, and
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|epi 2 pi| # |e 2 p|. For |epi 2 pi| the estimate was obtained in part 1 of

the proof.

Lemma 11. Let n : P ® R be an indefinite measure on a W*J-algebra

!. If ! is a W*K-algebra, then n is a linear measure on any W*J-factor @ ,
! of type I2. If ! is a W* P-algebra containing no type In,m (n, m # 2)

direct summands, then there exists a semiconstant measure n 0 such that n 2
n 0 is a linear measure on any W* J-factor @ , ! of type I2.

Proof. Let @ , ! be a W*J-factor of type I2. Let g+ P P+ ù @ and

g 2 P P 2 ù @ be such that g [ g+ 1 g 2 is the identity in @. Choose a

canonical symmetry J1 P ! with the properties g+ # 1/2(I 1 J1) and g 2 #
1/2(I 2 J1). In the Hilbert space H with the inner product (x, y)1 [ [J1x, y],

g+ and g 2 are orthogonal projections and there exists a partial isometry w P
@ with the initial projection g+ and the final one g 2 .

If ! is a W*K-algebra, then there exists a W*K-factor M , ! of type

I ` such that @ , M. By the Theorem,(13) the restriction of n to P ù M is a

linear measure. Hence the restriction of n to P ù @ ( , P ù M ) is a linear

measure, too.

Now, let ! be a W*P-algebra and t a faithful normal semifinite trace
on !. Let e P P, e # Q+. Denote by Ve the set of all partial isometries n P
V with the initial projection e.

(i) Assume that there exist orthogonal projections f, f1, f2 such that e ,
f , f1 , f2, f 1 f1 1 f2 # Q 2 . Let v, w1, and w2 P Ve be such that vv* 5 f
and w*i wi 5 fi , i 5 1, 2. The W*J-algebra !(v, w1, w2) generated by v, w1,

and w2 is a W*J-factor of type I1,3. (Every p P P+ ù !(v, w1, w2), p . 0 is
an atom in this factor.) By the Theorem,(13) there exists a unique constant

c(e) such that the restriction of the function m , where m (g) [ n (g) if g+ 5
0 and m (g) [ n (g) 2 c(e) if g+ Þ 0, is a linear measure on !(v, w1, w2).

We shall show that m is a linear measure on !(u), " u P Ve. By the Theorem,(13)

we have the following: If a measure is linear on some W*J-factor of type I2

in B(H ), then it is linear. The measure m is linear on the W J-factor !(w1)
of type I2. Hence m is linear on the W*J-factor !(v0, w1) of type I3 for every

v0 P Ve , v0v*0 5 f. Thus m is linear on !(v0). Let v1 P Ve be such that

v1v*1 # Q 2 2 f. The measure m is linear on !(v) , !(v, w1, w2). Hence m
is linear on !(v, v1). Therefore, m is linear on !(v1). Let v2 P Ve and Fv2 Ù
f 5 0 5 Fv2 Ù (Q 2 2 f ). By the assumption, f 1 f1 1 f2 # Q 2 . Hence there

exists v1 P Ve such that Fv1 ’ f and Fv1 ’ Fv 5 0. The measure m is linear
on ! (v1). Hence m is linear on !(v1, v2). Thus m is linear on !(v2). Next,

we similarly establish that m is linear on !(u), " u P Ve.

(ii) In the general case, there is a decomposition e 5 ( n
1 ei , ei # Q+,

such that for every ei condition (i) is fulfilled. Put c(e) 5 ( n
1 c(ei). Obviously



Gleason’s Theorem in W*J-Algebras 2077

m with the constant c(e) is a linear measure on !(v). Hence c(e) does not

depend on a decomposition of e.

(iii) In the same way, we can see that c(e) 5 c(e) if e , e, e # Q+.
(iv) Let us establish that c( ( ei) 5 ( c(ei). Here, the convergence of a

sum of an uncountable family of summands means that there only exists a

countable set of nonzero terms in the family and the usual series with these

summands converges absolutely. Suppose the contrary. Assume that there

exists a sequence {en} of mutually orthogonal projections such that c(en) .
0. " n [or c(en) , 0. " n], and ( c(en) 5 1 ` [or ( c(en) 5 2 ` ]. Let fn be a
J-self-adjoint linear functional on !(ven) such that n ( p) 5 fn(g) 1 c(en),

" g P P+ ù !(ven), and n ( p) 5 fn(g), " g P P 2 ù !(vee). Put c n [ venv*.

The operators

q(3/2 c n , 6 v* c n) [ 1/2(3 c n 6 ! 3v* c n 7 ! 3 c n v 2 v* c nv)

are projections in P 2 . Hence

n (q(3/2 c i, 6 v* c i)) 5 1/2(3fn( c n) 6 ! 3fn(v* c n 2 c nv)) 2 fn(en))

5 1/2(3 n ( c n) 6 2 ! 3Rfn(v* c n) 2 ( n (en) 2 c(en)))

Let X [ {n: ( n (en) 2 c(en))Rfn(v* c n) # 0}. The projections in

{q(3/2 c n , v* c n)}n P X ø {q(3/2 c n , 2 v* c n)}n P N \X

are mutually orthogonal by the construction. Hence there exists a projection

q [ o
n P X

q(3/2 c n , v* c n) 1 o
n P N \X

q(3/2 c n , 2 v* c n) P P 2

This implies

M [ 1/2 1 o
n P N

) n (q(3/2 c n , v* c n) ) 1 o
n P N \X

) n (q(3/2 c n , 2 v* c n) ) 2 , 1 `

From this, it follows that

0 # 1/2 o
n P N

) n (ee) 2 c(ee) )

# 1/2( o
n P X

) 2 ! 3Rfn(v* c n) 2 ( n (en) 2 c(en)) )

1 o
n P N \ X

2 2 ! 3Rfn(v* c n) 2 ( n (en) 2 c(en)) ) )

# M 1 3/2 o
n

) fn( c n) ) 5 M 1 3/2 o
n

) n ( n n) ) , 1 `

In addition. 0 # ( n (en) , 1 ` . Hence 1 ` 5 ( c(en) , 1 ` . We have a

contradiction. Thus c(e) 5 ( i c(ei) for any decomposition e 5 ( ei.
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The function c(e) is a completely additive measure. There exists an

integrable in the trace t self-adjoint operator T affiliated to the W*-algebra

Q+!Q+ such that c(e) 5 t (Te), " e.(9,7) We proved that c(e) 5 c( f ) if e , f.
Hence the operator T is affiliated to the center of Q+!Q+. By the Corollary

of ref. 5, p. 18), there is an operator Z affiliated to the center of ! such that

T 5 Q+ZQ+. Denote by n 0 the semiconstant measure t (Zg+), g P P.

(v) It remains to prove that n 2 n 0 is linear on every W*J-factor @ ,
! of type I2. Let f be the identity in @. Fix some decomposition f 5 f+ 1
f 2 , f+ P P+, f 2 P P 2 . Choose a canonical symmetry J1 P ! such that f+ #
Q 1

1 [ 1/2 (I 1 J1). Then f+ and f 2 are orthogonal projections with respect

to the metric (x, y)1 [ [J1, x, y].

(a) Assume first that there exist e, r P P, e # Q 1
1 Ù Q+, r # 1/2(I 2

J1) Ù Q 2 such that f(e 1 r) 5 0, e , f+, and e , r. Let v and w be partial

isometries with respect to (., .)i with v*v 5 e, vv* 5 r, and w*w 5 f+, ww*

5 e. Then !(@, v, w) is a W*J-factor of type I4. By (iii), c( f+) 5 c(e).
Therefore, n 2 n 0 is a linear measure on !(@, v, w). Hence n 2 n 0 is linear

on @.

(b) Note that by the assumption on ! [see (i)], (a) is fulfilled if f+ is

an Abelian projection. For @, there exists a finite set of W*J-factors @i of

type I2 such that for @i , " i, condition (a) is fulfilled; ab 5 0, " a P @i ,

" b P @i , i Þ j; @ , % i@i. The measure n 2 n 0 is linear on @i , " i. Hence

the measure n 2 n 0 is linear on @.

Corollary 12. Every indefinite measure on a W*J-algebra ! without

type In,m (n, m # 2) direct summands is continuous on P+ and P 2 in the
norm operator topology.

Proof. The W*J-algebra ! decomposes uniquely into two direct sum-

mands. !1, !2, where Q+!1Q
+ has no type I2 direct summand and Q+!2Q

+

is of type I2. (Note that Q 2 !2Q
2 is a direct sum of type In , 3 # n # 1 ` ,

summands.) The restriction of n to P+ ù Q+!1Q
+ is a completely additive

measure. By the Theorem,(9,7) n is continuous on P+ ù Q+!1Q
+ in the norm

topology. Also, n has a similar property on the projections in Q+!2Q
+.

For every e P P+ the operator J1 [ e+(I 2 e)+ 2 (I 2 e) 2 is a canonical

symmetry. With respect to the inner product (x, z)1 [ [J1x, z], H is a Hilbert
space, e is an orthogonal projection, and e P Q 1

1 !Q 1
1 [here, Q 1

1 [ 1/2(I 2
J1)]. Let { pn} , P+ and | pn 2 e|1 ® 0. Then |epn 2 e|1 ® 0 and | pn 2
epn|1 ® 0. By Lemmas 10 and 11, limn ® ` n ( p) 5 n (e). Hence n is continuous

on P+ in the norm operator topology. Analogously, n is continuous on P 2 .

If n is an indefinite measure, then the function n *( p) [ n ( p*). " p P
P, is an indefinite measure also.

Remark 13. The indefinite measures n and n * have the same semiconstant

measure n 0 satisfying Lemma 11.
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For every measure n and its Hermitian component the semiconstant

measure n 0 satisfying Lemma 11 is the same. A semiconstant measure cannot

be linear. Therefore, the following proposition singles out the linear Hermitian
component of a measure n . It completely describes indefinite Hermitian

measures.

Proposition 14. Let n be a Hermitian indefinite measure on a W*J-

algebra ! without type In,m (n, m # 2) direct summands. Define a measure

n 0 by setting n 0 [ 0 if ! is a W*K-algebra and taking n 0 as in Lemma 11

if ! is a W*P-algebra. Denote by n + and n 2 the self-adjoint ultraweakly
linear functionals with the supports not exceeding Q+ and Q 2 such that n ( p) 5
n +( p) 1 n 0( p). " p # Q+ and n ( p) 5 n 2 ( p) 1 n 0( p), " p # Q 2 . Then n ( p) 5
n +( p) 1 n 2 ( p) n 0( p). " p P P.

Proof. Let p 5 p( a e, v) P P+. !(e, v) is a W*J-factor of type I2. Hence

n 2 n 0 is a linear Hermitian measure on !(e, v). By Section 3 there exists

a self-adjoint and J-self-adjoint linear functional f P !
*
(e, v) such that

n ( p) 2 n 0( p) 5 f( p), " p P P ù !(e, v). By Proposition 6,

n ( p) 5 f( p) 1 n 0( p) 5 f(Q+pQ+) 1 f(Q 2 pQ 2 ) 1 n 0( p)

5 n +( p) 1 n 2 ( p) 1 n ( p).

By Remark 4, Corollary 12, and Proposition 9, the equality (8) is true for

every p P P+ ø P 2 and hence for every p P P.

Corollary 15. The skew-Hermitian component of every indefinite mea-

sure is linear on any W*J-subfactor of type I2 and is continuous on P+ ø P 2

in the norm topology.

5. SOME PROPERTIES OF A SKEW-HERMITIAN MEASURE

Lemma 16. Let m be the skew-Hermitian component of an indefinite

measure n . Assume that n is linear on any W*J-subfactor !(u), u P V, of

type I2. Then

) m ( p( a e, u)) ) # 2( a ( a 2 1))1/2( 2 n (u*u) n (uu*))1/2

Proof. We may identify !(u) with the algebra of all (2, 2) matrices in

a J-space H, dim H 5 2. Let n (.) 5 tr(T.). By Section 3, we may assume

that TJ $ 0. Let

T 5 1 a b

2 b c 2
in an orthonorma l base (e. f ). e P H + ø S. f P H 2 ù S. Since JT $ 0. we
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get ) b ) 2 # 2 ac 5 2 n (u*u) n (uu*) [ # 2 n (Q+) n (Q 2 )]. There exists u P R
such that

p( a e, u) 5 1 a 2 ei u ( a ( a 2 1))1/2

e 2 i u ( a ( a 2 1))1/2 a 2 1 2
in the base (e. f ). Hence

) m ( p( a e, u)) ) 5 ) tr(1/2(T 2 T*)p( a e, u)) )
5 ) 2Re 2 i u b ) ( a ( a 2 1))1/2

# 2 ) b ) ( a ( a 2 1))1/2 # 2( a ( a 2 1))1/2 ( 2 n (u* u) n uu*))1/2

Lemma 17. Let m be a skew-Hermitian measure. For every projection
p P P 2 there exists a projection f P P+ such that m ( p) 5 2 m ( f ) 5 m ( f *).

Proof. Let p P P 2 and q [ p 2 p Ù Q 2 . Then f [ FQ
1

q 1 FQ
2

q 2
q P P+ and m ( f ) 1 m ( p) 5 m ( f ) 1 m (q) 5 0. Hence m ( p) 5 m (q) 5
2 m ( f ) 5 m ( f *).

Lemma 18. Let m be the skew-Hermitian component of an indefinite

measure n , and p 5 p( a e, v). Then there is a constant c such that ) m (q) ) , c,

" q # p.

Proof. By the linearity of m (see Corollary 15) on !(v), there is a skew-

adjoint and J-adjoint linear functional m on !(v) such that m ( p( b e, v)) 5
m ( p( b e, v)), " p( b e, v)) P !(v). Note that

m ( p( a e, v)) 5 ( a 2 2 a )1/2 m (v 2 v*)

5 ( a 2 2 a )1/2 ( b 2 2 b ) 2 1/2 m ( p( b e, v))

By Corollary 15, for a given t . 0 there exists d . 0 such that ) m (g) ) 5
) m (Q+) 2 m (g) ) , t if |Q+ 2 g| , d . There exists b . 0 such that |Q+ 2
p( b Q+, u)| , d for every partial isometry u with the initial projection Q+

and the final one Fu # Q 2 . Let g # p 5 p( a e, v). Then g 5 p( a eg , veg).

(a) Let ! be a W*P-algebra. Then there exists a partial isometry w with

the initial projection Q+ 2 eq and the final one ww* # Q 2 2 vegv*. Since

m (r) 5 2 m (r*). " r P P, and p*( a e, v) 5 p( a e, 2 v), if follows that

either m (g) m ( p( a (Q+ 2 eg), w) $ 0 or m (g) m ( p( a (Q+ 2 eg), 2 w)) $ 0

Let, for example, the first be true. Then

) m (g) ) # ) m ( p( a Q+, veg 1 w)) )
5 ( a 2 2 a )1/2( b 2 2 b ) 2 1/2 ) m ( p( b Q+, veg 1 w)) )
# ( a 2 2 a )1/2( b 2 2 b ) 2 1/2t
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(b) Let ! be a W*K-algebra. By Lemma 11, n is linear on any W*J-

factor @ , ! of type I2. By Lemma 16,

) m (g) ) 5 ) m ( p( a eg , veg)) ) # 2( a ( a 2 1))1/2( 2 n (Q+) n (Q 2 ))1/2

The proof is complete.

Put p 5 p( a e, v) P P+. By Corollary 3,

| p| 5 2 a 2 1,

Fp 5 (2 a 2 I ) 2 1( a e 1 ( a 2 2 a )1/2(v 1 v*) 1 ( a 2 1)vv*)

and p 5 (2 a 2 1)FpJ. For every orthogonal projection f P P , f # Fp , the

operator g [ (2 a 2 1)fJ is a projection in P+ and g # p. Also, Fg 5 f and

p( a eg , veg) 5 g.

Next, let m be the skew-Hermitian component of an indefinite measure.

Let g a
v ( f ) [ (2 a 2 1) 2 1 m ((2 a 2 1) fJ ), " f P P , f # Fp. By Corollary 3(iv)

and the definition of a measure on P, we have g a
v ( f ) 5 ( g a

v ( fi) for any

decomposition f 5 ( fi. By Lemma 18, ) g a
v (e) ) # c for some constant c. By

the Theorem,(11) it follows from the additivity and the boundedness of g a
v

that there exists a Hermitian linear functional g a
v P !

*
such that g a

v ( f ) 5
g a

v ( f ), " f P P , f # Fp and the support of g a
v does not exceed Fp. Thus

g a
v (gJ ) 5 g a

v ((2 a 2 1)Fg) 5 (2 a 2 1) g a
v (Fg)

5 (2 a 2 1) g a
v (Fg) 5 m ((2 a 2 1)FgJ ) 5 m (g), " g P P+, g # p

Let w a [ (2 a 2 1) 2 1/2( a 1/2e 1 ( a 2 1)1/2v). It can be easily verified that

w*a w a 5 e and w a w*a 5 Fp( a e,v), i.e., w a is a partial isometry with the initial
projection e and the final one Fp( a e,v). Let m be a skew-adjoint and J-adjoint

linear functional such that m ( p) 5 m ( p), " p a [ p( a e, v) P !(v). Then

g a
v (w a ew*a ) 5 g a

v (Fp a ) 5 (2 a 2 1) 2 1 m ( p a )

5 (2 a 2 1) 2 1( a 2 2 a )1/2 m (v 2 v*)

5 (2 a 2 1) 2 1( a 2 2 a )1/2( b 2 2 b ) 2 1/2 m ( p b )

5 (2 a 2 1) 2 1( a 2 2 a )1/2( b 2 2 b ) 2 1/2(2 b 2 1) g b
v (Fp b )

5 (2 a 2 1) 2 1( a 2 2 a )1/2( b 2 2 b ) 2 1/2(2 b 2 1) g b
v (w b ew*b )

Thus

(2 a 2 1)( a 2 2 a ) 2 1/2 g a
v (w a bw*a )

5 (2 b 2 1)( b 2 2 b ) 2 1/2 g b
v (w b bw*b ), " b P !(v)

Hence the linear functional (2 a 2 1)( a 2 2 a ) 2 1/2 g a
v (w a , w*a ) does not depend
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on a . Let g v(.) 5 2 2 1(2 a 2 1)( a 2 2 a ) 2 1/2 g a
v (w a , w*a ). By the definition, the

support of g v , does not exceed Q+.

Lemma 19. Let m v(.) [ g v(v*. 2 .v). The function m v is a linear skew-

Hermitian measure on P, and m v(q) 5 m (q) holds for all projections q 5
p(x, vFx) and q 5 p(x, 2 vFx) [ 5 p*(x, vFx)].

Proof. By (2) and (3),

Q+(v*g 2 gv)*Q+ 5 Q+(v*g 2 gv) Q+

Q+(v*g* 2 g*v)Q+ 5 2 Q+(v*g 2 gv)*Q+

" g P P. Thus m v(g) P R and m v(g) 5 2 m v(g*), " g P P. Hence m v(.) is a

linear skew-Hermitian measure on P.

It is easy to see that

w a Fq 5 (2 a 2 1) 2 1/2 a 1/2Fq , Fq vw*a 5 (2 a 2 1) 2 1/2(1 2 a )1/2Fq

for every orthogonal projection Fq # Fp( a e,v). Hence for q # p( a e, v) we have

w a v*qw*a 5 w a v*Fqqw*a 5 (2 a 2 1) 2 1/2( a 2 1)1/2FqqJJw*a

5 (2 a 2 1) 2 1/2( a 2 1)1/2(2 a 2 1)FqJw*a 5 (2 a 2 1)1/2( a 2 1)1/2Fqw*a

5 ( a 2 1)1/2 a 1/2Fq

and

2 w a qvw*a 5 2 w a FqqJJvw*a 5 ( a 2 1)1/2 a 1/2Fq

Thus

m v(q) 5 (2 a 2 1)2 2 1( a ( a 2 1)) 2 1/2 g a
v (w a (v*q 2 qv)w*a )

5 (2 a 2 1)2 2 2( a ( a 2 1)) 2 1/2 g a
v (2( a 2 1)1/2 a 1/2Fq)

5 (2 a 2 1) g a
v (Fq) 5 m (q)

" q P P+, q # p( a e, v). It follows that

m v( p( b eq , veq)) 5 ( b 2 2 b )1/2 m v(veq 2 eq v*)

5 ( b 2 2 b )1/2( a 2 2 a ) 2 1/2 m v( p( a eq , veq))

5 ( b 2 2 b )1/2( a 2 2 a ) 2 1/2 m ( p( a eq , veq)) 5 m ( p( b eq , veq))

" p( b eq , veq) and " q 5 p( b eq , veq) # p( a e, v). Finally, by Remark 4 and

Corollary 12, we have

m ( p(x, vFx)) 5 m v( p(x, vFx)) 5 2 m v( p(x, 2 vFx)) 5 2 m ( p(x, 2 vFx))

The proof is complete.
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It follows from Lemma 19 and Corollary 15 that M m
a , 1 ` , " a . 1.

Note that ( a 2 2 a ) 2 1/2M m
a 5 ( b 2 2 b ) 2 1/2M m

b , " a , b .

Let g v 5 ) g v ) (e+ 2 e 2 ) be the polar decomposition for g v. Here, e+, e 2 P
P and e+ 1 e 2 5 e # Q+. We have Q+(v*p 2 pv)Q+ 5 (x2 2 x)1/2 1 (x2 2
x)1/2, " p 5 p(x, v) P P+. Hence

0 # Q+(v*p 2 pv)Q+ 5 2(x2 2 x)1/2

# 2( a 2 2 a )1/2 Q+ if |x| # a

By the latter inequalities, we have

) m ( p(x, v) ) 5 ) g v(2e+(x2 2 x)1/2e+) 2 g v(2e 2 (x2 2 x)1/2e 2 ) )
# g v(2( a 2 2 a )1/2e+) 2 g v(2( a 2 2 a )1/2e 2 )

5 m ( p( a e+, ve+)) 2 m ( p( a e 2 , ve 2 ))

5 m ( p( a e+, ve+)) 1 m ( p( a e 2 , 2 ve 2 ))

5 m ( p( a e, v(e+ 2 e 2 ))) # M m
a

Let | m |( p) [ sup{ ( ) m ( pi) ) :p 5 ( pi}. Put f + [ w a e+ w*a and f 2 [
w a e 2 w*a . Then

g a
v 5 ( g a

v ( f +, f +) 1 g a
v ( f 2 , f 2 )

is the polar decomposition of g a
v . For every q [ p( a eq , veq), g [ p( a eg ,

veg), and q, g # p( a e, v), we have qg 5 gq 5 0 Û eqeg 5 0 Û FqFg 5 0.

If follows that

o
i

) m ( pi) ) 5 (2 a 2 1) o
i

) g a
v (Fpi) )

# (2 a 2 1) o
i

) g a
v ) (Fpi) 5 (2 a 2 1) ) g a

v ) ( o
i

Fpi) 5 (2 a 2 1) ) g a
v ) (Fp)

# (2 a 2 1)| g a
v | 5 (2 a 2 1)( g a

v ( f +) 2 g a
v ( f 2 ))

5 m ( p( a e, v(e+ 2 e 2 )))

for any representation p( a e, v) 5 ( pi. Let s [ e+ 2 e 2 . Observe that the

functional m vs is positive.

Corollary 20. (i) | m |( p( a e, v)) 5 (2 a 2 1)| g a
v |. In particular, if | m |( p( a e,

v)) 5 0, then g a
v [ 0, and if M m

a 5 0, then m [ 0.

(ii) M m
a 5 sup{ m ( p): p 5 p( a Q+, v)}.

Proof. Part (i) is obvious.

(ii) By Corollary 3 (i), | p(x, w)| 5 | p(|x|Fx , w)|. Obviously, ) m ( p( b e,

w)) ) # m ( p( a e, w)) ) if b P [1, a ). Hence by Corollary 15,
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) m ( p(x, w)) ) # sup{ m ( p(|x|Fx , u))}

the supremum being taken over all u P V, with u*u 5 Fx.

(a) Let ! be a W* P-algebra. By the assumption, Q+ d Q 2 . Hence for

every w P V, w*w Þ Q+, there exists u P V such that u*u 5 Q+ 2 w*w
and Fu ’ Fw. The measure m is skew-Hermitian. Thus either

m ( p( a Q+, w 1 u) 5 m ( p( a w w, w)) 1 m ( p( a (Q+ 2 w*w), u))

$ m ( p( a w*w, w))

or

m ( p( a Q+, w 2 u)) 5 m ( p( a w*w, w)) 1 m ( p*( a (Q+ 2 w*w), 2 u))

$ m ( p( a w*w, w))

It follows that

m ( p( a e, w)) # sup{ m ( p): p 5 p( a Q+, v) P P+} ( # M m
a )

for every projection p( a e, w) P P. Thus Part (ii) is fulfilled.

(b) Let ! be a W*K-algebra. The inequalities proved above are also

satisfied here. The following situation is also possible. For a given e . 0
there exists p( a e, v) such that v*v 5 e Þ Q+, Fv 5 Q 2 , and M m

a 2 m ( p( a e,

v)) , e . Let en ¯ 0 be a sequence of orthogonal projections such that en #
e, en , Q 2 . By the assumption, we have Q+ d Q 2 . Consequently, there is

a sequence of partial isometries {vn} , V with the initial projections Q+ 2
(e 2 en) and the final ones venv* [ 5 Q 2 2 v(e 2 en)v*], " n. Then pn [
p( a Q+, v(e 2 en) 1 vn(Q

+ 2 (e 2 en)) P P+. By Corollary 15 and Lemma 16,

) m ( pn) 2 m ( p( a e, v)) )
5 ) m ( p( a (Q+ 2 (e 2 en)), vn(Q

+ 2 (e 2 en))) 2 m ( p( a en , ven)) )
# 2( a ( a 2 1))1/2[ 2 n (Q+) 2 (e 2 en))

1/2 n (vev*)1/2

2 n (en)
1/2 n (venv*)1/2] ® 0

if n ® 1 ` . Hence there exists n such that M m
a 2 m ( pn) , e . Thus part

(ii) follows.

Lemma 21. Let v P V be a partial isometry such that M m
a 2 m ( p( a Q+,

v)) , e , e P (0.1). Assume that Q 2 2 Fv . 0. Then for any p( a e, w), where

Fw # Q 2 2 Fv , the following inequality holds: ) m ( p( a e,w)) ) #
max{ e , 2 e 1/2(M m

a )1/2}.

Proof. Without loss of generality we may assume that
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(0 # ) | m |( p( a e, w)) 5 m ( p( a e, w)) and

| m |( p( a Q+, v)) 5 m ( p( a Q+, v))

and that M m
a . 0 [see Corollary 20(i)].

Consider the W*J-factor @ 5 !(w, ve) of type I3. By the linearity of

the restriction of m to P ù @ and by Proposition 7, there exists a nonnegative

linear functional f P @
*

with the support f # e, f Þ 0, such that m ( p) 5
f (u*p 2 pu), " p P P ù @. Here, u P @ is a partial isometry with the
initial projection e and the final one Fu # Fw 1 Fve.

If Fu ’ Fw , then e(u*p( a e, w) 2 p( a e, w)u)e 5 0. Hence m ( p( a e, w))

5 0. If Fu 5 Fw , then m ( p( a e, ve)) 5 0. Hence 0 # m ( p( a e, w)) , e . Now,

let Fu Þ Fw and Fu Þ Fve. By Lemma 2.3,(7)

Fve 5 b Fu 1 ( b 2 b 2)1/2 (v0 1 v*0 ) 1 (1 2 b )v0v*0

where 0 , b , 1 and v0 is the partial isometry from the polar decomposition

(I 2 Fu)Fve Fu 5 v0 ) (I 2 Fu)Fve Fu ) . It can be easily verified that b 1/2Fu 1
(1 2 b )1/2v*0 P @ is a partial isometry with the initial projection Fve and the

final one Fu , and (1 2 b )1/2Fu 2 b 1/2v*0 P @ is a partial isometry with the

initial projection Fw and the final one Fu. Therefore,

u*ve 5 u*(FuFve)ve 5 b 1/2u*( b 1/2Fu 1 (1 2 b )1/2v*0 )ve 5 b 1/2ei u e

and u*w 5 u*FuFww 5 (1 2 b )1/2eite for some complex number ei u and

eit. Thus

m ( p( a e, ve)) 5 f (( a 2 2 a )1/2 (u*ve 1 ev*u))

5 2( a 2 2 a )1/2Rei u b 1/2 f (e)

and m ( p( a e, w)) 5 2( a 2 2 a )1/2Reit(1 2 b )1/2 f (e). By the assumption of

Lemma 21, we have

2( a 2 2 a )1/2(1 2 Ri u b 1/2) f (e) 5 m ( p( a e, u) 2 m ( p( a e, ve) , e

Hence

1 2 b 1/2 # 1 2 b 1/2Rei u , e (2( a 2 2 a )1/2 f (e)) 2 1

Finally,

(0 # ) m ( p( a e, w)) # 2( a 2 2 a )1/2(1 2 b )1/2 f (e)

5 2( a 2 2 a )1/2(1 1 b 1/2)1/2(1 2 b 1/2)1/2 f (e)

# 2( a 2 2 a )1/2(1 1 b 1/2)1/2( e (2( a 2 2 a )1/2 f (e)) 2 1)1/2 f (e)

# 2 e 1/2(2( a 2 2 a )1/2 f (e))1/2 # 2 e 1/2(M m
a )1/2

It remains to make use of the arguments in Section 2.
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Lemma 22. If for every d . 0 there exists a partial isometry v P V such

that ) m ( p) 2 m v( p) ) , d | p| for every simple projection p P P, then the

measure m is linear.

Proof. Let, for a given d . 0, v P V be a partial isometry from the

assumption of Lemma 22. Let g v(e) [ g v(v*e 1 ev), " e P P . Note that

g v(e) 5 0 if e 5 e Ù Q+ 1 e Ù Q 2 . Also,

) g v(e) ) # 2| g v| 5 ( a 2 2 a ) 2 1/2(2 a 2 1)| g a
v | # ( a 2 2 a ) 2 1/2M m

a

Let M m [ ( a 2 2 a ) 2 1/2M m
a . First we define a measure g on P . Let e P

P . Put g (e) [ g u(u*e 1 eu), where u is the partial isometry from the polar

decomposition Q 2 eQ+ 5 u ) Q 2 eQ+ ) if Q 2 eQ+ Þ 0 and g (e) [ 0 if e 5 e Ù
Q+ 1 e Ù Q 2 . Hence ) g (e) ) # M m , " e P P .

Now we will estimate ) g (e) 2 g v(e) ) . One may suppose that e Ù Q+ 5
e Ù Q 2 5 0. Let x [ Q+eQ+ 5 * l de l be the spectral resolution of Q+eQ+.

By Lemma 2.3,(7) e 5 x 1 u(x2 2 x)1/2 1 (x2 2 x)1/2u* 1 u(I 2 x)u*. For
every number n denote by xk/n the operator [(2k 2 1)/(2n)](ek/n 2 ek 2 1/n). Let

ek/n 5 xk/n 1 u(x2
k/n 2 xk/n)

1/2 1 (x2
k/n 2 xk/n)

1/2u* 1 u(ek/n 2 ek 2 1/n 2 xk/n)u*

and en [ ( n
1 ek/n. By the construction, |e 2 en| , 12n 2 1/2. Hence

max{ ) g (e) 2 g (en) ) , ) g v(e 2 g v(en) ) } # M m |e 2 en| # M m 12n 2 1/2

By the construction, 1/2 is a regular point for xn [ ( n
1 xk/n. Thus

gk/n [ 2 1 2k 2 1

2n
2 1 2

2 1

ek/n J P P, " k and gk/ngi/n 5 0 (k Þ i)

It is clear that

|gk/n| 5 1 2k 2 1

n
2 1 2

2 1

By the linearity of g u ,

g (en) 5 g u(u*en 1 enu)

5 o
n

k 5 1

|gk/n|
2 1 g u(u*gk/n J 1 gk/n Ju)

5 o
n

k 5 1

|gk/n|
2 1 g u(u*gk/n 2 gk/nu)

5 o
n

k 5 1

|gk/n|
2 1 m (gk/n)

By the assumption of Lemma 21, ) m (gk/n) 2 m v(gk/n) ) # d |gk/n|. Hence
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) g (en) 2 g v(en) ) 5 Z o nk 5 1

|gk/n|
2 1 m (gk/n) 2 o

n

k 5 1

|gk/n|
2 1 m v(gk/n) Z 5 n d

Finally,

) g (e) 2 g v(e) ) # ) g (e) 2 g (en) ) 1 ) g (en) 2 g v(en) ) 1 ) g (en) 2 g v(e) )
# M m 12n 2 1/2 1 n d 1 M m 12n 2 1/2

From the latter we obtain that g (.) is continuous in 0 in the strong opera-

tor topology.

Now, let e 5 f 1 r, where f, r P P . Then g v(e) 5 g v( f ) 1 g v(r) and

) g (e) 2 g ( f ) 2 g (r) ) # ) g (e) 2 g v(e) ) 1 ) g ( f ) 2 g v( f ) ) 1 ) g (r) 2 g v(r) )
# 2M m 12n 2 1/2 1 n d

It follows that g (e) 5 g ( f ) 1 g (r).
Thus g is bounded additive and continuous in 0 in the strong operator

topology function on the logic P . Hence g is a measure on P . Again, by the

Theorem,(11) there exists a self-adjoint functional g P !
*

such that g (e) 5
g (e), " e P P .

Let now p P P. Then 1/2 is a regular point for FpQ
+Fp. By Section 2,

p 5 * 1 1
2 ` (2 l 2 1) 2 1 d( f l Fp)J, where f l is the projection from the spectral

resolution FpQ
+ Fp 5 * l df l . Let u be the partial isometry in the polar

decomposition Q 2 pQ+ 5 u ) Q 2 pQ+ ) . By Lemma 19,

m ( p) 5 g u(u*p 2 pu) 5 g u(u*pJ 1 pJu)

5 g u(u* #
1 1

2 `

(2 l 2 1) 2 1 d( f l Fp) 1 #
1 1

2 `

(2 l 2 1) 2 1 d( f l Fp)u)

5 #
1 1

2 `

(2 l 2 1) 2 1 d( g u(u*( f l Fp) 1 ( f l Fp)u)

5 #
1 1

2 `

(2 l 2 1) 2 1 d g ( f l )

5 g 1 #
1 1

2 `

(2 l 2 1) 2 1 d( f l Fp) 2 5 g ( pJ )

6. THE PROOF OF THE THEOREM

By Corollary 20(ii), for every e . 0 there exists p( a Q+, v) such that

M m
a 2 m ( p( a Q+, v)) , e . Now, we will show that the assumption of Lemma

22 is satisfied.
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(i) Let {ej} be a finite orthogonal set of projections ej # Q+. Let { b j}

and { a j}, where a j . 1 are sets of real numbers. Denote by p the projection

( p( a jej , ei b jvej) and by @ the W*J-algebra % j !(ej , vej). Obviously @ is a
direct sum of W*J-factors of type I2. Hence by Corollary 15, the restriction

of m to P ù @ extends to a linear functional on @. Obviously p P @ and

M m
a (@) 2 m ( p( a ( ej , v( ( ej))) , e . By Proposition 8, there exists a function

d ( e ) satisfying d ( e ) e ® 0 ® 0 such that

) m ( p) 2 m v( p) ) # |p| d ( e ) (9)

(ii) Let s P V be a partial isometry with the initial subspace eH and the

final one veH. The restriction of sv* to veH is a unitary operator. By making
use of the spectral resolution of sv* on veH, (i), and the norm continuity of

m and m v , we obtain (9) for q [ p( b e, s).
(iii) Let s P V be a partial isometry with the initial subspace eH. Assume

that sH # vH and (sH ) ’ (veH ). The algebra @ [ !(vf, ve, v*s), where

f 5 v*ss*v is a W*J-factor of type I4, and p( b e, s) P P ù @. By Proposition
8 and the Theorem,(13) (9) is satisfied for p( b e, s).

(iv) Let e, f P P , e Ú f # Q+, and 0 5 e ’ Ù f 5 e Ù f ’ 5 e Ù f. By

Lemma 2.3,(7)

e 5 x 1 w(x 2 x2)1/2 1 (x 2 x2)1/2 w* 1 w(I 2 x)w*

where x 5 fef and w is the partial isometry in the polar decomposition f ’ ef 5
w ) f ’ ef ) . Let x 5 * 1 1

0 l df( l ) be the spectral resolution for x and

D fk [ f 1 k 1 1

n 2 2 f 1 k

n 2 , xk/n [
k 1 1/2

n
D fk , xn [ o

n 2 1

0

xk/n

Also, let

ek/n [ xk/n 1 w(xk/n 2 x2
k/n)

1/2 1 (xk/n 2 x2
k/n)

1/2 w* 1 w( D fk 2 xk/n)w*

and en [ ( n 2 1
0 ek/n. Obviously, ek/n, en P P . Denote by @ the W*J-algebra

% n 2 1
0 ! (w D fk , v D fk , vw D fk). Clearly @ is a direct sum of W*J-factors of type

I4. Again, by Corollary 15, the restriction of m to P ù @ extends to a linear

functional on @. In addition, we have q [ p( a ( f Ú e), v( f Ú e)) P P ù @
and M m

a (@) 2 m (q) # e . Let un [ x1/2
n 1 w( f 2 xn)

1/2 and u [ x1/2 1 w( f 2
x)1/2. Note that un (resp. u) is a partial isometry with the initial projection f
and the final projection en (e, respectively), and p( b f, vun) P @. By the

Theorem (13) and Proposition 8, (9) holds for p( b f, vun). Observe that

| p( b f, vu) 2 p( b f, vun)|n 2 ` ® 0

Hence by Corollary 15, the inequality (9) holds for p( b f, vu).
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Let e Ù f Þ 0 and 0 5 e ’ Ù f 5 e Ù f ’ . Then % n 2 1
0 !(w D fk , v D fk , vw D fk)

% !(v(e Ù f )) is a sum of W*J-algebras of type I4 and a W*J-factor of type

I2. Hence (9) holds for p( b f, v(u 1 e Ù f )).
Let e ’ Ù f Þ 0 and e Ù f ’ Þ 0. Suppose that there exists a partial

isometry u0 with the initial and final projections e ’ Ù f and e Ù f ’ . Thus by

(iii), the inequality (9) holds for p( b f, v(u0 1 u 1 e Ù f )).

(v) Let ! be a W*K-algebra.

(a) Let first s P V be such that ss* 5 vv* and s*s [ e , Q+. As in the

proof of Corollary 20, there exists a sequence en ¯ 0 of orthogonal projections
en # e with Q+ 2 e 1 en , sens*. Let {sn} , V be a sequence with the

initial projections Q+ 2 e 1 en and the final ones sens*, " n. Denote pn 5
p( b Q+, s(e 2 en) 1 sn (Q+ 2 (e 2 en)). By the complete additivity of the

measures m and m v , we have

m ( p( b e, s)) 5 lim
n ® `

m ( p( b e(e 2 en), s(e 2 en)))

m v( p( b e, s)) 5 lim
n ® `

m v( p( b e(e 2 en), s(e 2 en)))

By Lemma 11 and Lemma 16,

lim
n ® `

[ m ( p( b e(e 2 en), s(e 2 en))) 2 m ( pn)] 5 0

lim
n ® `

[ m v( p( b e(e 2 en), s(e 2 en))) 2 m v( pn)] 5 0.

Hence by (ii).

) m ( p( b e, s) 2 m v( p( b e, s)) ) 5 lim ) m ( pn) 2 m v( pn) ) # | p( b e, s)| d ( e )

(b) Let s P V be such that s*s 5 Q+ and ss* , vv*. Similarly, (9) holds

true for p( b Q+, s).

Lemma 23. For every w P V the restriction of m to P ù E!E, where

E [ w* w 1 ww*, is a linear measure.

Proof. Without loss of generality we may assume that w*w 5 Q+. Let,

for a given e . 0, a projection p( a Q+, y), yy 5 ww*, be such that

M m
a (E!E ) 2 m ( p( a Q+, y)) , e .

Consider a projection p( b e, s) P P, seH # yQ+H. Assume that seH 5
yeH (or seH ’ yeH ). By analogy with (ii) and (iii), we obtain ) m ( p) 2
m g( p) ) # | p| d ( e ) for p 5 p( b e, s).

Now, consider the general case of p( b e, s). Denote by f the projection

y*(Fye Ú Fse 2 Fye)y and by r the projection y*(Fye Ú Fse)y. Note that Fye , Fse.

(a) Let ! first be a W*P-algebra. Then there exists a partial isometry

u0 with the initial projection f Ù r ’ and the final one f ’ Ù r. Let u be the
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partial isometry from (iv). Note that u has the initial projection f 2 f Ù r ’

and the final one r 2 r Ù f ’ . By the definition, y(e 1 f )H 5 yeH Ú seH 5
seH % y(u 1 u0)fH. The operator (s 1 y(u 1 u0)) is a partial isometry with
the initial and the final projections e 1 f and Fye Ú Fse, respectively. Define

q [ p( b e, s) 1 p( b f, y(u 1 u0)). By analogy with (ii). ) m (q) 2 m y(q) ) #
|q| d ( e ) 5 (2 b 2 1) d ( e ). By analogy with (iii) and (iv), we have

) m ( p( b f, y(u 1 u0))) 2 m y( p( b f, y(u 1 u0))) ) # 2(2 b 2 1) d ( e ) 5 2|q| d ( e )

Thus

) m ( p( b e, s)) 2 m y( p( b e, s)) )
5 ) m (q) 2 m ( p( b f, y(u 1 u0))

1 m v( p( b f, y(u 1 u0)) 2 m y(q) )
# ) m (q) 2 m y(q) ) 1 ) m ( p( b f, y(u 1 u0)) 2 m y( p( b f, y(u 1 u0)) )
# 3(2 b 2 1) d ( e ) 5 3| p( b e, s)| d ( e )

(b) Let ! be a W*K-algebra. The cases Fye # Fse and Fse # Fye (i.e.,

r 5 0 and f 5 0) were examined in (ii) and (v). Now, let r Þ 0, f Þ 0, and

u be the partial isometry in (a). We again examine two cases.

(1) Suppose that there is a partial isometry d with the initial and final

projections f Ù r ’ and r8 # r Ù f ’ (i.e., f Ù r ’ d r Ù f ’ ). Hence the partial
isometry y(d 1 u) has the initial projection f and the final one # Fye Ú Fse 2
Fse. By analogy with (iii) and (iv), the inequality (10) holds for p( b f, y(d 1
u)). The operator y(d 1 u) 1 s belongs to V and has the initial projection f
1 e and the final one # fye Ú Fse. By analogy with (v), step (a), (10) holds

for p( b ( f 1 e), y(d 1 u) 1 s). By analogy with (a), (10) holds for p( b e, s).
(2) Suppose that there is a partial isometry d0 with the initial, and final

projection, r Ù f ’ and f 8 # f Ù r ’ (i.e., r Ù f ’ d f Ù r ’ ). By analogy with

(v), step (b), (9) holds for p( b (d0d
*
0 1 f 2 f Ú r ’ ), y(d0 1 u) 1 s). Hence

for p( b e, s), (10) holds.

Now, consider the general case of f Ù r ’ and r Ù f ’ . By ref. 5, Theorem

1, p. 218, there exists a central projection G P ! such that G( f Ù r ’ ) d
G(r Ù f ’ ) and (I 2 G) (r Ù f ’ # (I 2 G)( f Ù r ’ ). Hence by (b1) and (b2),

we have

) m ( p( b e, s)) 2 m y( p( b e, s)) )
# ) m ( p( b eG, sG)) 2 m y( p( b eG, sG)) )

1 ) m ( p( b eG ’ , sG ’ )) 2 m y( p( b eG ’ , sG ’ )) ) # 6| p( b e, s)| d ( e )

Thus for a given d . 0 there exists e . 0 such that
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M m
a (E!E ) 2 m ( p( a Q+, y)) , e implies ) m ( p) 2 m y( p) ) # | p| d

for every simple projection p( b e, s). In view of Lemma 22, the proof of

Lemma 23 is complete.

(vi) Now we finish the proof of the Theorem.

Let first seH # vQ+H. By Lemma 23 and Propositions 8 and 7, for a

given d . 0 there exists e . 0 such that 0 # M m
a 2 m ( p( a Q+, v)) , e implies

) m ( p( b e, s)) 2 m v( p( b e, s)) ) # | p( b e, s)| d ( e ).
Now, suppose that seH is not a subset of vQ+H. Every g 5 p( b e, s) is

representable as a sum p( b e, s) 5 p( b e1, se1) 1 p( b e2, se2), where e1 [ v*( fv Ù
Fse)v and e2 [ e 2 e1. By Lemma 23 and Corollary 15, the following holds:

) m ( p( b e1, se1)) 2 m v( p( b e1, se1)) ) # 3(2 b 2 1) d ( e ) 5 3| p( b e, s)| d ( e )

There is a decomposition e2 5 e1
2 1 e2

2 1 e3
2, where ei

2, i 5 1, 2, 3, are

orthogonal projections, e1
2 , e2

2, and e3
2 is Abelian. By the construction, there

exist an orthogonal projection pi with ei
2 # pi # Q+ and wi P V with the

initial projection pi and the final one wi w
*
i $ (sei

2 s*) Ú (vei
2v*) (i 5 1, 2).

By Lemma 23, the restriction of m to P ù F!F, where F [ pi 1 wi pi w*i
and hence to P ù G!G, where G [ ei

2 1 (vei
2v*) Ú (sei

2s*), is a linear

measure. By Proposition 8, we have

) m (gi) 2 m v(gi ) # | p( b e, s)| d ( e ), gi [ p( b ei
2, sei

2) (i 5 1, 2)

Let g3 [ p( b e3
2, se3

2). Now we will show that the inequality (10) is true for
g3. The W *J-algebra !(se3

2, ve3
2) is of type I3 (if e3

2 Þ 0). Put f [ ve3
2v*

and r [ se3
2s*. Obviously, f and r are abelian projections. Let D fk (k 5

0, n 2 1, u, and un be as in step (iv). By (ii), we may assume that f and r
are the initial and the final projections for u. The operator w [ u*sv* is a

unitary one in the Abelian algebra f!f. Hence for a given n P N there exists

a finite set of mutually orthogonal projections fj # f ( j 5 1, . . . , m) and
real numbers b j such that for wn [ ( m

1 ei b j fj the inequality |w 2 wn| # 1/n
holds. Put fkj [ fk D fj and sn [ unwnv. By the construction, the W*J-algebra

@ [ % k, j !(v*fkj, unfkj ) is a direct sum of W*J-factors of type I3, and

p( a e3
2, ve3

2) P @. We have |s 2 sn| # 3/n. By the Theorem,[13] the restriction

of m to P ù @ is a linear measure. Hence by the norm continuity of m and
m v (see Corollary 12), we have

) m ( p( b e3
2, se3

2)) 2 m v( p( b e3
2, se3

2)) )
5 lim

n 2 `
) m ( p( b e3

2, sne
3
2)) 2 m v( p( b e3

2, sne
3
2)) )

# (2 b 2 1) d ( e ) 5 |p( b e, s)| d ( e )

Thus
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) m (g) 2 m v(g) ) # ) m ( p( b e1, se1)) 2 m v( p( b e1, se1)) )

1 o
3

1
) m (gi) 2 m v(gi) ) # 7 |g| d ( e )

Now, let

q [ q(( b 2 1)ww*, w*) 5 b w*w 1 ( b 2 2 b )1/2 (w 2 w*) 2 ( b 2 1)ww*

be a simple negative projection [see (3)]. Then p [ p( b ww*, w*) is a simple

positive projection. Also, p ’ q and p 1 q 5 ww* 1 w*w P P . We have

m ( p) 1 m (q) 5 m (ww* 1 w*w) 5 0 5 m v( p) 1 m v(q). Hence

) m (q) 2 m v(q) ) 5 ) m ( p) 2 m v( p) ) # 7|p| d ( e ) 5 7|q| d ( e )

Thus the assumption of Lemma 22 is satisfied. By Lemma 22, m is a

linear measure. This concludes the proof of the Theorem.

Remark 24. Similar to P and L, for an arbitrary W*J-algebra of type I2

there exists an indefinite measure on P such that the Theorem fails to be

true. We believe that the theorem is valid for the W*J-algebras of types I1,2

and I2,2 (for the W*J-factors of these types the Theorem is known to be true(14)).
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